SFNs for HD Radio Synchronizing the IBOC Signal

Design, Implementation and Field Trials

Presentation Overview

- 1. Single Frequency Networks Today
- 2. Application Areas
- 3. Establishing SFN Planning Parameters
- 4. Matching D/U Signal Ratios to Signal Delay
- 5. Nautel SFN Implementation (FM and HD)
- 6. Field Trial: KUSC, Los Angeles

Chuck Kelly Regional Sales Manager

Philipp Schmid Research Engineer

Questions?

FM Single Frequency Networks Today

- FM Booster stations are <u>"fill-in" translator stations</u> on the <u>same</u> frequency as the main station by the FCC.
 - Booster contour may not exceed the protected F(50,50) service contour of the primary station.
 - Boosters maximum ERP is 20% of primary station's class
 - A primary FM station may have more than one booster.
 - Booster stations may not cause interference to reception of the primary station's signal within the community of license

https://www.fcc.gov/media/radio/fm-translators-and-boosters

 While this example is US specific, other have similar regulations. Check with your local regulator for more info.

Application: Roadway Coverage

Each node can warn about hazards within the area on P3 channel.

Tunnel micro booster provides continuous underground service.

Tunnel specific public safety information can be carried on P3 partitions Many smaller transmitters cover entire roadway with well defined overlap regions

Gas station micro booster advertises gas prices and services.

11 3

Local content can be on P3 channel (MP3 mode) with common P1 channel

Application: The FM Band is Full

- Difficult to find white space for high power stations due to large F(50,10) interfering contour
- Also consider 1st and 2nd adjacent channel protection
- Directional antenna patterns can only help so much
- Difficult to find translator frequencies

Application: The FM Band is Full

- Lower power transmitters reduce interfering contour
- Transmission power savings
- We can now create new "equivalent" full power stations for the community of license.
 - fringe listening will be reduced
- Future station expansion possibilities
- We must minimize SFN interference through synchronization and planning.

Application: Wide Area Coverage

- Public broadcasters with a mandate for national, state—wide, or wide area coverage
 - mandated to reach majority of population
- Translator network requires at least 3 channel allocations – more in difficult terrain
- Also consider adjacent channels
- SFN is spectrum efficient

Application: All Digital IBOC

- Hybrid HD radio will remain limited by the FM carrier
- All Digital IBOC is ideally suited for SFN operation
 - Stations A,B, or C are optional in SFN
- Offers more diverse content using the existing spectrum and existing receivers.
- HD Multiplex combines multiple IBOC signals without the FM carrier
 - 380 kbps, 9-15 audio services

Application: Backup Transmitter/Exciter

Today exgine modulators are not time synchronized. Variances typically vary from $100\mu s$ to 10ms.

Receiver becomes confused having locked to the first IBOC symbol. Some receivers may lose HD lock for minutes until tuned off channel. Diversity delay has changed.

Application: Backup Transmitter/Exciter

IBOC modulation must be identical.

IBOC symbols must be aligned across main and backup.

Receiver maintains HD lock. Diversity delay is maintained.

making digital broadcasting work

Establishing SFN Parameters

- 1. What are the required Desired vs Undesired (D/U) ratios?
- 2. What are the required timing parameters?

FM SFN Protection Ratios

Time Delay	Mono FM		Stereo FM	
Impairment Grade	3	4	3	4
2 µs	<1 dB	1 dB	4 dB	6 dB
5 µs	1 dB	2 dB	10 dB	12 dB
10 µs	1 dB	3 dB	14 dB	16 dB
20 µs	-	11 dB	-	-
40 µs	-	20 dB	-	-

- ITU Impairment Grades
 - 5: Excellent quality imperceptible impairment
 - 4: Good quality
 - 3: Fair quality
- perceptible impairment, but not annoying
- slightly annoying impairment
- e.g. a stereo FM signal 14 dB stronger to a 10 µs delayed interferer produces grade 3 impairment.
- 10 µs represents 3 km signal flight time

Results from

ITU-R BS.412

Nautel FM Stereo SFN Lab Tests

making digital broadcasting work

Nautel IBOC SFN Lab Tests

Solving for Constant Delay Lines

$$d1 = vct \qquad d1^2 = (c + x)^2 + y^2$$
$$d2 = vc(t - \Lambda t) \qquad d2^2 = (c - x)^2 + y^2$$

v_c speed of light

Δt configurable booster time offset

Solve for x and y: $x(t) = \frac{d1^2 - d2^2}{4c} \qquad y(t) = \pm \sqrt{d1^2 - (x+c)^2}$ $\forall t > \frac{2c}{v_c} - \Delta t$ 50us booster delay:

Time Sync: Synchronized Transmission

<u>Step 1</u>

Achieve modulation and time synchronization

Time Sync: Zeroed Delay

<u>Step 2</u>

Calibrate out delay primary to booster delay

26.2 km or 87.3µs

Time Sync: Advance Transmission

<u>Step 3</u>

Advance transmission by desired offset (40µs)

$$87.3\mu s - 40\mu s = 47.3\mu s$$

Matching D/U Signal Ratios to Signal Delay

Simulation: Matching D/U to Delay

FCC F(50,50) curves for 25 kW, 100 m

- Omnidirectional antenna pattern
- Shown with 60 dBu and 70 dBu contour

Worst case flat world - no terrain shielding

Mode	Desired / Undesired	Time Margin	Condition	
FM Stereo	14 dB	10 µs	ITU-R BS.412-9 Grade 3 audio impairment Nautel FM impairment tests	
FM Mono	3 dB	10 µs	ITU-R BS.412-9 Grade 4 audio impairment	
IBOC	7 dB	40 µs	Potential loss of HD lock, Nautel IBOC bit error tests with 3 dB added fading margin (MP1/MP3)	

Stereo FM Synchronization

25 kW Class C3 and 250W Booster

- Shown with 60 dBu and 70 dBu contour
- 26.2 km or 87.3 µs separation

Large interference potential (14 dB D/U)

- Booster not reaching city grade contour
- <u>Terrain shielding is a must !!!</u>

60 µs booster time advance

- Booster delay 87.3 μ s 60 μ s = 27.3 μ s
- Meets primary wave 30 µs or 9 km out

10 µs timing margin provides small buffer

- 14 dB D/U change over 3 km is not possible
- No seamless coverage

Mono FM Synchronization

Smaller **interference** potential (**3 dB D/U**)

- Booster exceeds city grade contour
- 45 µs booster time advance
 - Booster delay 87.3 μ s 45 μ s = 42.3 μ s
 - Meets primary wave 22.5 µs or 6.7 km out

10 µs timing margin provides small buffer

- 3 dB D/U change over 3 km can be possible
- Limited seamless coverage is possible
- Time advance could be decreased to curve the timing margin for a better match

IBOC Synchronization

Hybrid FM+IBOC System

- Primary 2.5 kW IBOC at -10 dBc injection
- Booster 25 W IBOC at -10 dBc injection

Minimal interference potential (7 dB D/U)

- Booster increases city grade contour
- Little impact on combined 60 dBu contour

40 µs booster time advance

- Booster delay 87.3 μ s 40 μ s = 47.3 μ s
- Meets primary wave 20 µs or 6 km out

40 µs timing margin provides large buffer

- Seamless coverage is possible

Expanding Your IBOC Coverage

Hybrid FM+IBOC System

- Primary 2.5 kW IBOC at -10 dBc injection
- 3 Boosters at 25 W IBOC at -10 dBc injection

No IBOC interference expected

- Big increase in city grade contour
- Some increase in combined 60 dBu contour

39 µs booster time advance

- Booster to booster interference not shown
- Extended seamless coverage beyond station protected contour
- Perhaps reduce primary IBOC injection and save transmission power

In theory this is legal today !!!

SFN Implementation

Step 1: RF Consultant

- A competent broadcast engineer with expertise in SFN installations is a must:
 - perform RF coverage simulations
 - evaluate booster locations and antenna patterns
 - identify interference zones and terrain shielding
 - determine optimal time offsets; may be different for FM and IBOC
 - handle legal matters
- Nautel provides components, system design is the responsibility of a professional consultant.

Step 2: Synchronize the FM Audio Signal

Step 2: Synchronize the FM MPX Signal

MPX Sync: Sigmacom EtherMPX

MPX Sync: 2wcom FMC01

What equipment do you need?

For FM analog only:

- Main transmitter dependent on power level
- Booster transmitter(s) dependant on power level
- MPX over AES codecs with time sync: \$3-4,000 / site Adding HD Radio:
- Nautel transmitter for both main and booster
- Importer+
- Exporter+
- FM + HD Modulation monitor for each site

Lab Results: Digital Startup

Startup Delay: better than $\pm 2\mu s$ (0 samples) Improved Digital Diversity Delay Stability (unsync'ed typical $\pm 400 \ \mu s$ to 3 ms)

Field Trial: KUSC, Los Angeles

Signal coverage Comparison: KUSC-FM

- Main transmitter, 39 kw DA on Mt. Harvard (no booster)
 - Yellow: portable
 - Green: in-home
 - Red: in-car
- Signal coverage from booster, 200w DA on Oak Mountain, Porter Ranch, toward Santa Clarita
 - Same color coding
 - High signal levels in Santa Clarita
 - Terrain causes signal fragmentation
 - Side and back radiation on antenna causes signal in San Fernando Valley

KUSC multipath effects for HD Radio

- Linsynchronized HD Radio
 Predicted digital reception
 difficulties for present -20 dBc
 injection on both Main and
 booster
- Synchronized HD Radio
 Flight time to booster 176µs, booster is delayed by 176µs -40µs
- <u>Time of Arrival Contours</u> Equal delay is 20µs from booster

KUSC Drive Test Results Thursday Apr 14, 2016

- Tested both -20 dBc and -14 dBc on Booster
- Solid IBOC coverage of Santa Clarita valley
- Good coverage along route 14 in Canyon Country. HD is locked even with severe FM impairment. Intermittent drops only with expected terrain shielding in canyons.
- Only short intermittent drops in Sylmar region only with clear obstruction like underpasses with little signal from either transmitter.
 - Proves IBOC is synchronized
- Significantly impressed with coverage from 2W IBOC transmission at 3000'
- Test was successful: HD Boosters are an effective option to extend coverage

Thank you Ron Thompson and Tom King of KUSC and John Kean

Conclusion

- SFNs must be aligned in time within interference zone
 - FM Stereo: Difficult
 - FM Mono: Workable
 - IBOC: Possible, increase coverage seamlessly
- Nautel offers industry first SFN implementation
 - Fixed HD audio throughput delay
 - Align FM with Modulation Monitor
- Nautel has demonstrated seamless HD transitions
- Field trials at KUSC, Los Angeles, are a success

Limited Release Participation

Interested in helping out with limited release HD SFN if we do one?

Send your contact details and station profile to:

Matt Herdon, Product Manager matt.herdon@nautel.com

making digital broadcasting work

SUPPORT MATTERS

INDUSTRY'S #1 SUPPORT

Learn More / Stay in Touch

Nautel Waves Newsletter
 http://www.nautel.com/newsletter/

Webinars
 <u>http://www.nautel.com/webinars/</u>

YouTube

http://www.youtube.com/user/NautelLtd

We're here to help

sales@nautel.com www.nautel.com

Chuck Kelly

Chuck.Kelly@Nautel.com

making digital broadcasting work

Thank You

making digital broadcasting work

Limited Release Participation

If you are interested in participating in a limited HD SFN release please contact Nautel and tell us about your site, why it would benefit from HD SFNs and whether you already have an RF consultant lined up to work with you.

Please take a moment to complete our survey at the end of this webinar. Thank You.

Matt Herdon <u>matt.herdon@nautel.com</u> Product Manager, Nautel Chuck Kelly <u>Chuck.Kelly@Nautel.com</u> Regional Sales Manager

Elevated IBOC Power Levels

Hybrid FM+IBOC System

- Primary 2.5 kW IBOC at -10 dBc injection
- Booster 250 W IBOC at 0 dBc injection

No interference (7 dB D/U)

- Booster increases city grade contour
- Big increase in combined 60 dBu contour

39 µs booster time advance

- Eliminates back end interference entirely
- Booster delay 87.3 μ s 40 μ s = 47.3 μ s
- Meets primary wave 20 µs or 6 km out

40 µs timing margin provides large buffer

- Extended seamless coverage is possible

Booster Elevated IBOC Power Levels

Increase IBOC to 0dBc injection? Yes

- Smaller FM interference region
- Large IBOC coverage
- Place booster closer to protected contour
- Tests conducted at WD2XAB Baltimore
 Increase IBOC higher? Caution
- Risk to drown out FM receivers close by
- FM receiver selectivity captures IBOC
 - 20 dB bandwidth ~260-500 kHz

IBOC only boosters? No for hybrid FM+HD

• Future application in all-digital operation

Exciter Synchronization

Required: fixed FM analog delay

Synchronizing E2X Packets

	Byte 0	Byte 1	Byte 2	Byte 3
Word 0	res	res	Audio Count	
Word 1	Transmit GPS Timestamp (opt)			
Word 2	res	res	res	res
Word 3	res	res	res	res

Audio Count: count of first 44.1 kHz audio sample since last PPS appended to exporter audio message of 4096 samples.

Transmit GPS Timestamp (optional): The PPS after which this audio message is to be sent.

 Sync words available since IRSS 4.3.2 (2010 Gen 3 Exporter / Exgine)

- Passed to exporter audio msg
- Included in E2X clock packet

 L1 Frame alignment (ALFN) is possible by starting the exporter on an L1 boundary (optional)

- ALFN 0 was transmitted 00:00:00 UTC on January 6, 1980
- Exporter must compute L1 frame boundary in the future